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Аннотация. В статье рассматриваются подходы к интеграции алгоритмов 

искусственного интеллекта в функциональные модули интеллектуальной системы 

дистанционного обучения. Описана архитектура, основанная на событийной модели 

сбора данных, витрине признаков и наборе моделей машинного обучения для 

предиктивной аналитики и персонализации. Показано, как рекомендательные и 

классификационные алгоритмы встраиваются в контур LMS для формирования 

адаптивных траекторий обучения и повышения вовлечённости обучающихся. 

Сформулированы практические результаты, полученные в рамках разработки и 

прототипирования интеллектуальной системы дистанционного обучения. 
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Развитие цифровой образовательной среды сопровождается ростом объёмов 

данных об учебной активности обучающихся. Традиционные системы 

дистанционного обучения (LMS) фиксируют прохождение курсов и тестов, но чаще 

всего используют эти данные лишь для отчётности и контроля успеваемости. В 

таких условиях интеграция алгоритмов искусственного интеллекта (ИИ) в 

функциональные модули LMS становится ключевым фактором перехода от 

статических сценариев обучения к интеллектуальным системам, формирующим 

адаптивные траектории на основе анализа поведения обучающихся [1]. Тема статьи 

непосредственно связана с магистерским исследованием автора, посвящённым 
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разработке интеллектуальной системы дистанционного обучения. Целью является 

описание архитектурных и алгоритмических решений по интеграции ИИ-

компонентов в функциональные модули LMS и определение их роли в повышении 

эффективности и персонализации образовательного процесса. 

1. Теоретико-методологические основы интеграции ИИ в LMS. Интеграция 

алгоритмов искусственного интеллекта в системы дистанционного обучения 

опирается на подходы образовательной аналитики (learning analytics) и 

интеллектуального анализа образовательных данных (educational data mining). 

Данные о действиях обучающихся (просмотр материалов, попытки тестов, участие в 

форумах, время работы с ресурсами и др.) рассматриваются как источник признаков 

для предиктивных и рекомендательных моделей. 

Методологически такая интеграция предполагает: 

– переход от модели «LMS как хранилище контента» к модели «LMS как 

платформа сбора и обработки событий»; 

– выделение специального слоя данных (feature store), обеспечивающего 

подготовку признаков для моделей; 

– использование ансамбля алгоритмов (классификация, регрессия, 

кластеризация, рекомендательные системы) с регулярным обновлением на основе 

новых данных; 

– включение результатов работы моделей в контур принятия решений, 

влияющих на интерфейс и сценарии взаимодействия обучающегося с системой. 

Таким образом формируется замкнутый интеллектуальный контур: EventLog 

→ feature store → модели ИИ → модуль политики (policy) → интерфейс LMS, с 

обратной связью в виде новых событий, порождаемых пользователями в ответ на 

рекомендации системы. 

2. Функциональная декомпозиция интеллектуальной системы. 

Интеллектуальная система дистанционного обучения включает ряд 

взаимосвязанных модулей, в которые интегрируются алгоритмы искусственного 

интеллекта [2, c. 56]. К ключевым модулям интеллектуальной LMS относятся: 
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– модуль сбора событий (EventLog). Регистрирует значимые действия 

пользователей: вход в курс, просмотр материалов, запуск и завершение тестов, 

отправку ответов, участие в форуме, переходы по рекомендациям. События 

нормализуются и сохраняются в унифицированном формате, что обеспечивает их 

дальнейшую обработку. 

– модуль витрины признаков (Feature Store). Агрегирует и трансформирует 

«сырые» события в признаки, пригодные для обучения и инференса моделей: 

количество просмотренных модулей, среднее время на задание, частота входов в 

систему, паттерны ошибок в тестах и др. Поддерживаются пакетные вычисления и 

обновление признаков в режиме, близком к реальному времени [3]. 

– модуль моделей искусственного интеллекта. Включает набор 

специализированных моделей: предсказание риска невыполнения курса (dropout 

prediction), прогноз успеваемости (вероятность успешного прохождения следующего 

модуля или теста), рекомендательные модели (контент- и пользователь-

ориентированные рекомендации учебных элементов), модели сегментации 

обучающихся (кластеризация по стилю и темпу обучения). 

– модуль политики (Recommendation & Policy Engine). На основе выходов 

моделей определяет, какие подсказки, рекомендации или адаптации контента следует 

показать конкретному обучающемуся: предложение повторить модуль, пройти 

дополнительное объяснение, выполнить альтернативное задание, а также когда 

уведомить преподавателя о необходимости вмешательства. 

– интерфейсные модули LMS. Встраивают результаты работы ИИ в 

пользовательский интерфейс: блок «Рекомендуемые материалы», адаптивные 

маршруты прохождения курса, визуализацию рисков для преподавателя, 

уведомления о студентах «в зоне риска». 

Такая функциональная декомпозиция позволяет локализовать ответственность 

модулей, упростить интеграцию алгоритмов ИИ без радикальной перестройки 

базовой LMS и обеспечить масштабируемость решения. 

3. Типовые задачи машинного обучения в интеллектуальной LMS. При 

проектировании интеллектуальной LMS в рамках магистерского исследования 
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выделяется несколько типичных задач машинного обучения, обеспечивающих 

предиктивную аналитику и персонализацию обучения. К ключевым из них 

относятся прогноз риска невыполнения курса, рекомендательный отбор учебных 

элементов и кластеризация обучающихся. 

Прогноз риска невыполнения курса (dropout prediction). Первая задача 

формулируется как бинарная классификация: для каждого обучающегося и курса 

необходимо предсказать вероятность незавершения курса в заданный срок. В 

качестве признаков используются: 

– интенсивность и регулярность входов в систему; 

– доля завершённых модулей; 

– результаты промежуточных тестов; 

– задержки между попытками выполнения заданий; 

– участие в обсуждениях. 

Для решения задачи целесообразно применять интерпретируемые модели 

(логистическая регрессия, деревья решений, градиентный бустинг), позволяющие 

объяснить вклад отдельных признаков. Результаты модели поступают в модуль 

политики, который инициирует отправку напоминаний, рекомендацию повторить 

ключевой модуль или предложить консультацию с преподавателем. 

Рекомендательный отбор учебных элементов. Вторая типичная задача связана 

с рекомендательным отбором учебных элементов. Рекомендательный модуль 

выбирает следующий учебный элемент (лекцию, практическое задание, тест) с 

учётом: 

– исторического профиля обучающегося; 

– сложности и тематики уже пройденных модулей; 

– типичных траекторий успешных обучающихся. 

В качестве базового подхода рекомендуются гибридные методы, сочетающие 

контент-ориентированные алгоритмы и коллаборативную фильтрацию [4]. 

Рекомендации передаются в интерфейс LMS в виде блока «Рекомендуемые 

материалы» или адаптивного маршрута прохождения курса, который динамически 

изменяется по мере накопления данных об обучающемся. 
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Кластеризация обучающихся. Третья задача относится к кластеризации 

обучающихся. Задача кластеризации (например, k-means, иерархические методы) 

позволяет выделить группы обучающихся с близкими паттернами поведения: 

«быстро продвигающиеся», «регулярные, но медленные», «нерегулярные с риском 

отставания» и др. Эти сведения используются для: 

– настройки порогов срабатывания предиктивных моделей; 

– дифференциации рекомендаций; 

– подготовки аналитических отчётов преподавателям и администраторам. 

Сегментация реализуется как офлайн-процесс в модуле витрины признаков с 

периодическим обновлением кластеров по мере накопления новых данных об 

активности обучающихся. 

Реализация описанной архитектуры в виде прототипа интеллектуальной LMS 

позволила: 

– сформировать единый журнал событий, отражающий детализированную 

учебную активность обучающихся; 

– интегрировать выдачу рекомендаций в интерфейс LMS (блок 

«Рекомендуемые материалы», уведомления преподавателю о студентах «в зоне 

риска»). 

В совокупности с механизмами уведомлений и рекомендаций это создаёт 

предпосылки для перехода от реактивного к проактивному сопровождению учебного 

процесса. Интеграция алгоритмов искусственного интеллекта в функциональные 

модули системы дистанционного обучения позволяет перейти от статических, 

одинаковых для всех сценариев к адаптивным и персонализированным траекториям 

обучения. Предложенная в рамках магистерского исследования архитектура 

интеллектуальной LMS опирается на событийную модель сбора данных, витрину 

признаков и набор специализированных моделей предиктивной аналитики и 

рекомендаций, встроенных в контур принятия решений. 

Практическая реализация прототипа показала принципиальную реализуемость 

такого подхода и его потенциал для повышения вовлечённости и успеваемости 

обучающихся. Дальнейшее развитие системы связано с расширением набора задач 
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машинного обучения (прогнозирование освоения конкретных компетенций, 

интеллектуальная проверка открытых ответов), внедрением методов объяснимого 

ИИ и совершенствованием механизмов оценки влияния рекомендаций на 

образовательные результаты. 
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